Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 45(5): 2952-2961, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629556

RESUMO

To explore the pollution characteristics and source of soil heavy metal in a coal mine area near the Yellow River in Shandong, the geo-accumulation index method and improved Nemerow pollution index method were used to evaluate the pollution characteristics of soil heavy metal. The absolute principal component-multiple linear regression model (APCS-MLR) was used to quantitatively analyze the source of soil heavy metal, and the spatial distribution of Hg and Cd were analyzed using the Kriging spatial difference method in ArcGIS. The result accuracy of the APCS-MLR model was further verified. The results showed that:The measured contents of soil heavy metal Cu, Zn, Pb, Cr, Cd, Ni, As, and Hg all exceeded the normal site, among which, Hg and Cd exceeded the background values of soil elements in Shandong. The coefficient of variation (CV) of Hg was higher than 0.500, indicating significant spatial heterogeneity. Moreover, the correlation between Hg and other heavy metals was generally low, and the possibility of the same pollution source was small. The results of the geo-accumulation index and improved Nemerow pollution index showed that the overall soil heavy metal pollution was at a moderate level, among which the Hg pollution level was the highest, and its maximum value was at a slanted-heavy pollution level; Cu, Cd, and As in soil caused local pollution, which were at a slanted-light pollution level. Soil heavy metal pollution was closely related to mining activities, rehabilitation, and engineering construction in the coal mine area. The two major pollution sources of soil heavy metal in the research area were the compound source of the parent material and industrial and mining transportation sources (known source 1) and the compound source of atmospheric sedimentation and coal production (known source 2), the contribution rates of which were 76.705% and 16.171%, respectively. The results of the APCS-MLR model were shown to be reliable by analyzing the content distribution of Hg and Cd using the Kriging space difference mode. This research can provide scientific basis for the precise control and improvement of soil heavy metal pollution, ensuring the safety of food and agricultural products and improving the quality of the ecological environment in the coal mine area in the Shandong section of the Yellow River Basin.

2.
Environ Int ; 185: 108496, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38359549

RESUMO

Artificial sweeteners (AS) are extensively utilized as sugar substitutes and have been recognized as emerging environmental contaminants. While the effect of AS on aquatic organisms has garnered recent attention, their effects on soil invertebrates and gut microbial communities remain unclear. To address this knowledge gap, we exposed springtails (Folsomia candida) to both single and combined treatments of four typical AS (sucralose [SUC], saccharin [SAC], cyclamate [CYC], and acesulfame [ACE]) at environmentally relevant concentrations of 0.01, 0.1 and 1 mg kg-1 in soil. Following the first-generational exposure, the reproduction of juveniles showed a significant increase under all the AS treatments of 0.1 mg kg-1. The transcriptomic analysis revealed significant enrichment of several Kyoto Encyclopedia of Gene and Genome pathways (e.g., glycolysis/gluconeogenesis, pentose and glucuronate interconversions, amino sugar, and nucleotide sugar metabolism, ribosome, and lysosome) in springtails under all AS treatments. Analysis of gut bacterial microbiota indicated that three AS (SUC, CYC, and ACE) significantly decreased alpha diversity, and all AS treatments increased the abundance of the genus Achromobacter. After the sixth-generational exposure to CYC, weight increased, but reproduction was inhibited. The pathways that changed significantly (e.g., extracellular matrix-receptor interaction, amino sugar and nucleotide sugar metabolism, lysosome) were generally similar to those altered in first-generational exposure, but with opposite regulation directions. Furthermore, the effect on the alpha diversity of gut microbiota was contrary to that after first-generational exposure, and more noticeable disturbances in microbiota composition were observed. These findings underscore the ecological risk of AS in soils and improve our understanding of the toxicity effects of AS on living organisms.


Assuntos
Microbioma Gastrointestinal , Poluentes Químicos da Água , Edulcorantes/toxicidade , Edulcorantes/análise , Edulcorantes/metabolismo , Solo , Poluentes Químicos da Água/análise , Ciclamatos/análise , Amino Açúcares , Nucleotídeos
3.
J Hazard Mater ; 466: 133567, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38271874

RESUMO

Arsenic (As) and cadmium (Cd) pose potential ecological threats to cropland soils; however, few studies have investigated their combined effects on multilevel organisms and soil functioning. Here, we used collembolans and soil microbiota as test organisms to examine their responses to soil As and Cd co-contamination at the gene, individual, and community levels, respectively, and further uncovered ecological relationships between pollutants, multilevel organisms, and soil functioning. At the gene level, collembolan transcriptome revealed that elevated As concentrations stimulated As-detoxifying genes AS3MT and GST, whereas the concurrent Cd restrained GST gene expression. At the individual level, collembolan reproduction was sensitive to pollutants while collembolan survival wasn't. At the community level, significant but inconsistent correlations were observed between the biodiversity of different soil keystone microbial clusters and soil As levels. Moreover, soil functioning related to nutrient (e.g., carbon, nitrogen, phosphorus, and sulfur) cycles was inhibited under As and Cd co-exposure only through the mediation of plant pathogens. Overall, these findings suggested multilevel bioindicators (i.e., AS3MT gene expression in collembolans, collembolan reproduction, and biodiversity of soil keystone microbial clusters) in cropland soils co-contaminated with As and Cd, thus improving the understanding of the ecotoxicological impact of heavy metal co-contamination on soil ecosystems.


Assuntos
Arsênio , Poluentes Ambientais , Microbiota , Poluentes do Solo , Cádmio/metabolismo , Arsênio/toxicidade , Arsênio/análise , Solo , Multiômica , Microbiota/genética , Poluentes Ambientais/análise , Produtos Agrícolas/metabolismo , Reação em Cadeia da Polimerase , Poluentes do Solo/metabolismo
4.
mSystems ; 8(3): e0014323, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37246882

RESUMO

Bathyarchaeota, known as key participants of global elements cycling, is highly abundant and diverse in the sedimentary environments. Bathyarchaeota has been the research spotlight on sedimentary microbiology; however, its distribution in arable soils is far from understanding. Paddy soil is a habitat similar to freshwater sediments, while the distribution and composition of Bathyarchaeota in paddy soils have largely been overlooked. In this study, we collected 342 in situ paddy soil sequencing data worldwide to illuminate the distribution patterns of Bathyarchaeota and explore their potential ecological functions in paddy soils. The results showed that Bathyarchaeota is the dominant archaeal lineage, and Bathy-6 is the most predominant subgroup in paddy soils. Based on random forest analysis and construction of a multivariate regression tree, the mean annual precipitation and mean annual temperature are identified as the factors significantly influencing the abundance and composition of Bathyarchaeota in paddy soils. Bathy-6 was abundant in temperate environments, while other subgroups were more abundant in sites with higher rainfall. There are highly frequent associations between Bathyarchaeota and methanogens and ammonia-oxidizing archaea. The interactions between Bathyarchaeota and microorganisms involved in carbon and nitrogen metabolism imply a potential syntrophy between these microorganisms, suggesting that members of Bathyarchaeota could be important participants of geochemical cycle in paddy soils. These results shed light on the ecological lifestyle of Bathyarchaeota in paddy soils, and provide some baseline for further understanding Bathyarchaeota in arable soils. IMPORTANCE Bathyarchaeota, the dominant archaeal lineage in sedimentary environments, has been the spotlight of microbial research due to its vital role in carbon cycling. Although Bathyarchaeota has been also detected in paddy soils worldwide, its distribution in this environment has not yet been investigated. In this study, we conducted a global scale meta-analysis and found that Bathyarchaeota is also the dominant archaeal lineage in paddy soils with significant regional abundance differences. Bathy-6 is the most predominant subgroup in paddy soils, which differs from sediments. Furthermore, Bathyarchaeota are highly associated with methanogens and ammonia-oxidizing archaea, suggesting that they may be involved in the carbon and nitrogen cycle in paddy soil. These interactions provide insight into the ecological functions of Bathyarchaeota in paddy soils, which will be the foundation of future studies regarding the geochemical cycle in arable soils and global climate change.


Assuntos
Euryarchaeota , Solo , Humanos , Solo/química , Amônia/metabolismo , Archaea/metabolismo , Meio Ambiente , Euryarchaeota/metabolismo , Carbono/metabolismo
5.
Front Microbiol ; 14: 1065302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36992926

RESUMO

Introduction: The microbiome inhabiting plant leaves is critical for plant health and productivity. Wild soybean (Glycine soja), which originated in China, is the progenitor of cultivated soybean (Glycine max). So far, the community structure and assembly mechanism of phyllosphere microbial community on G. soja were poorly understood. Methods: Here, we combined a national-scale survey with high-throughput sequencing and microsatellite data to evaluate the contribution of host genotype vs. climate in explaining the foliar microbiome of G. soja, and the core foliar microbiota of G. soja were identified. Results: Our findings revealed that both the host genotype and environmental factors (i.e., geographic location and climatic conditions) were important factors regulating foliar community assembly of G. soja. Host genotypes explained 0.4% and 3.6% variations of the foliar bacterial and fungal community composition, respectively, while environmental factors explained 25.8% and 19.9% variations, respectively. We further identified a core microbiome thriving on the foliage of all G. soja populations, including bacterial (dominated by Methylobacterium-Methylorubrum, Pantoea, Quadrisphaera, Pseudomonas, and Sphingomonas) and fungal (dominated by Cladosporium, Alternaria, and Penicillium) taxa. Conclusion: Our study revealed the significant role of host genetic distance as a driver of the foliar microbiome of the wild progenitor of soya, as well as the effects of climatic changes on foliar microbiomes. These findings would increase our knowledge of assembly mechanisms in the phyllosphere of wild soybeans and suggest the potential to manage the phyllosphere of soya plantations by plant breeding and selecting specific genotypes under climate change.

6.
Microbiol Spectr ; 11(1): e0437122, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36625666

RESUMO

Wild rice has been demonstrated to possess enriched genetic diversity and multiple valuable traits involved in disease/pest resistance and abiotic stress tolerance, which provides a potential resource for sustainable agriculture. However, unlike the plant compartments such as rhizosphere, the structure and assembly of phyllosphere microbial communities of wild rice remain largely unexplored. Through amplicon sequencing, this study compared the phyllosphere bacterial and fungal communities of wild rice and its neighboring cultivated rice. The core phyllosphere microbial taxa of both wild and cultivated rice are dominated with Pantoea, Methylobacterium, Nigrospora, and Papiliotrema, which are potentially beneficial to rice growth and health. Compared to the cultivated rice, Methylobacterium, Sphingomonas, Phaeosphaeria, and Khuskia were significantly enriched in the wild rice phyllosphere. The potentially nitrogen-fixing Methylobacterium is the dominated wild-enriched microbe; Sphingomonas is the hub taxon of wild rice networks. In addition, the microbiota of wild rice was more governed by deterministic assembly with a more complicated and stable community network than the cultivated rice. Our study provides a list of the beneficial microbes in the wild rice phyllosphere and reveals the microbial divergence between wild rice and cultivated rice in the original habitats, which highlights the potential selective role of wild rice in recruiting specific microbiomes for enhancing crop performance and promoting sustainable food production. IMPORTANCE Plant microbiota are being considered a lever to increase the sustainability of food production under a changing climate. In particular, the microbiomes associated with ancestors of modern cultivars have the potential to support their domesticated cultivars. However, few efforts have been devoted to studying the biodiversity and functions of microbial communities in the native habitats of ancestors of modern crop species. This study provides a list of the beneficial microbes in the wild rice phyllosphere and explores the microbial interaction patterns and the functional profiles of wild rice. This information could be useful for the future utilization of the plant microbiome to enhance crop performance and sustainability, especially in the framework of sustainable agroecosystems.


Assuntos
Basidiomycota , Microbiota , Micobioma , Oryza , Oryza/microbiologia , Bactérias/genética
7.
Chemosphere ; 309(Pt 1): 136651, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36181839

RESUMO

Soil antimony (Sb) contamination occurs globally due to natural processes and human activities. Total Sb concentration in soils fails to assess its ecological risk, while determined by the concentration of available Sb, which is readily for biological uptake. Available Sb in different soils varied significantly according to soil properties. However, so far it is unknown how soil properties regulate Sb availability, and no model has been established to predict it through soil properties. In this study, 19 soils spiked with antimonite [Sb(III)] were used to identify the major factors controlling Sb availability and establish its predicting models. The results showed that available Sb in different soils varied largely depending on the contents of free aluminum (fAl), free iron (fFe) and electric conductivity (EC), which explained 33%, 27% and 24.9% of the total variation, respectively. During the first 42 days of soil aging, fAl and EC effectively predicted the concentrations of available Sb with R2 = 0.64, while during the later stages (70-150 d) of soil aging, fAl content was the unique parameter employed into the predicting model (R2 = 0.53). These results firstly demonstrate that the content of free aluminum (fAl) is the most important factor regulating Sb availability in soils, although the content of fAl is much lower than that of fFe. This finding can help to develop new remediation materials for Sb-contaminated soils. The prediction models can provide promising tools of assessing the ecological risk. In addition, Sb availability was also affected by the oxidation of Sb(III). After 150 days aging, 1-61% of Sb(III) was oxidized to pentavalent Sb [Sb(V)], which was significantly positively correlated with available Sb, suggesting that Sb(III) oxidization mobilizes Sb in soils. All these findings would help to understand Sb migration and transformation in soils, and to develop new strategies for remediating Sb-contaminated soils.


Assuntos
Antimônio , Poluentes do Solo , Humanos , Antimônio/análise , Solo , Alumínio , Adsorção , Poluentes do Solo/análise , Solubilidade , Ferro
8.
J Hazard Mater ; 436: 129135, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35594672

RESUMO

In straw return fields, nitrogen-fertilizers are added to mitigate microbial competition for nitrogen with plants. However, in arsenic (As)-contaminated paddy fields, the specific effects of different nitrogen fertilizers on As mobility after straw incorporation and the interactions among iron(Fe)/carbon(C)/nitrogen(N)/As are not well understood. In the reported microcosm experiment we monitored As-mobility as a function of different dosages of KNO3, NH4Cl and rice straw incorporation. Addition of both KNO3 and NH4Cl significantly inhibited the As mobilization induced by straw incorporation. Following the KNO3 addition, the As concentration in porewater dropped by 51-66% after 2 days of the incubation by restraining Fe reduction and enhancing Fe oxidation. High-dose NH4Cl addition reduced As in porewater by 22-43% throughout the incubation by decreasing porewater pH. High-throughput sequencing results demonstrated that KNO3 addition enriches both the denitrifying and Fe-oxidizing bacteria, while diminishing Fe-reducing bacteria; NH4Cl addition has the opposite effect on Fe-reducing bacteria. Network analysis revealed that As and Fe concentrations in porewater were positively correlated with the abundance of denitrifying and Fe-reducing bacteria. This study broadens our insight into the As biogeochemistry associated with the N/C/Fe balance in soil, which are of great significance for agronomic management and mitigation the risk of As-contaminated paddy fields.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/metabolismo , Bactérias/metabolismo , Fertilizantes/análise , Nitrogênio/metabolismo , Oryza/metabolismo , Solo , Poluentes do Solo/metabolismo
9.
New Phytol ; 234(6): 1977-1986, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34921429

RESUMO

Plants form complex interaction networks with diverse microbiomes in the environment, and the intricate interplay between plants and their associated microbiomes can greatly influence ecosystem processes and functions. The phyllosphere, the aerial part of the plant, provides a unique habitat for diverse microbes, and in return the phyllosphere microbiome greatly affects plant performance. As an open system, the phyllosphere is subjected to environmental perturbations, including global change, which will impact the crosstalk between plants and their microbiomes. In this review, we aim to provide a synthesis of current knowledge of the complex interactions between plants and the phyllosphere microbiome under global changes and to identify future priority areas of research on this topic.


Assuntos
Microbiota , Plantas
10.
J Hazard Mater ; 421: 126731, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34339987

RESUMO

Citric acid (CA) is the major exudate of rice roots, yet the effects of CA on arsenic (As) transformation and microbial community in flooded paddy soil have not been clearly elucidated. In this study, microcosms were established by amending CA to As contaminated paddy soils, mimicking the rhizosphere environment. Results showed that 0.5% CA addition significantly enhanced As mobilization after one-hour incubation, increased total As in porewater by about 20-fold. CA addition induced arsenate release into porewater, and subsequently formed ternary complex of As, iron and organic matters, inhibiting further As transformation (including arsenate reduction and arsenite methylation). Furthermore, the results of linear discriminant analysis (LDA) effect size (LEfSe) and network analysis revealed that CA addition significantly enriched bacteria associated with arsenic and iron reductions, such as Clostridium (up to 35-fold) and Desulfitobacterium (up to 4-fold). Our results suggest that CA exhibits robust ability to mobilize As through both chemical and microbial processes, increasing the risk of As accumulation by rice. This study sheds light on our understanding of As mobilization and transformation in rhizosphere soil, potentially providing effective strategies to restrict As accumulation in food crops by screening or cultivating varieties with low CA exuding.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/análise , Ácido Cítrico , Rizosfera , Solo , Poluentes do Solo/análise
11.
Environ Sci Technol ; 55(17): 11784-11794, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34375092

RESUMO

Fertilization is known to affect antibiotic-resistance gene (ARG) patterns in the soil, even in the gut of soil fauna. Here, we conducted a microcosm experiment to investigate differences of effects of different fertilizers on collembolan gut ARG profiles and to further explore the microecological mechanisms that cause the differences. Although fertilization increased the abundance of ARGs, compared with the conventional manure, the application of antibiotic-reduced manure and vermicompost all curbed the enrichment of ARGs in the gut of collembolans. The results of the structural equation model revealed that changes in the microbial community caused by fertilizations have an important contribution to variations in the ARGs. We further found that the fungal community, like bacterial community, is also an important driver of ARG patterns in the collembolan gut. The fungi belonging to Dokmaia and Talaromyces were significantly correlated with the ARGs in the gut of collembolans. In addition, the application of vermicompost significantly increased the abundance of agricultural beneficial microbes in the soil environment. Together, our results provide an insight into the role of the fungal community on ARG patterns in the soil collembolan gut microbiome and highlight environmental friendliness of vermicomposting.


Assuntos
Artrópodes/microbiologia , Microbioma Gastrointestinal , Micobioma , Animais , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Genes Bacterianos , Esterco , Solo , Microbiologia do Solo
12.
Chemosphere ; 281: 130998, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34289636

RESUMO

The soil protistan community makes important contributions to the ecological functions of soil. However, our knowledge of the effects of pollutants, especially plastic particles, on the soil protistan community is still very limited compared to our knowledge on other soil microbes, such as bacterial and fungi. In this study, we revealed the effects of combined and single pollution caused by arsenic (As) and microplastics/nanoplastics (MPs/NPs) on bacterial, fungal and protistan communities. Our results revealed that combined pollution through As and MPs/NPs distinctly affected the composition and structure of the soil protistan communities (P < 0.05), but in the case of bacteria, only some families were altered, and there was no impact on fungi. Changes of soil protistan communities might be mainly due to As pollution, and MPs/NPs exposure increased this detrimental effect. Further, As + MPs exposure greatly increased the abundance of soil protistan parasites, and As + NPs exposure caused an evident decrease in the abundance of soil protistan consumers (P < 0.05). These findings indicate that combined pollution by As and MPs/NPs can affect the ecological functions of soil by altering soil protistan communities. These results will help enhance our understanding of the impact of plastic particles on soil ecosystems.


Assuntos
Arsênio , Microplásticos , Arsênio/toxicidade , Bactérias , Ecossistema , Fungos , Humanos , Plásticos/toxicidade , Solo , Microbiologia do Solo
13.
ISME J ; 15(12): 3508-3521, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34117322

RESUMO

Most microorganisms in the biosphere remain uncultured and poorly characterized. Although the surge in genome sequences has enabled insights into the genetic and metabolic properties of uncultured microorganisms, their physiology and ecological roles cannot be determined without direct probing of their activities in natural habitats. Here we employed an experimental framework coupling genome reconstruction and activity assays to characterize the largely uncultured microorganisms responsible for aerobic biodegradation of biphenyl as a proxy for a large class of environmental pollutants, polychlorinated biphenyls. We used 13C-labeled biphenyl in contaminated soils and traced the flow of pollutant-derived carbon into active cells using single-cell analyses and protein-stable isotope probing. The detection of 13C-enriched proteins linked biphenyl biodegradation to the uncultured Alphaproteobacteria clade UBA11222, which we found to host a distinctive biphenyl dioxygenase gene widely retrieved from contaminated environments. The same approach indicated the capacity of Azoarcus species to oxidize biphenyl and suggested similar metabolic abilities for species of Rugosibacter. Biphenyl oxidation would thus represent formerly unrecognized ecological functions of both genera. The quantitative role of these microorganisms in pollutant degradation was resolved using single-cell-based uptake measurements. Our strategy advances our understanding of microbially mediated biodegradation processes and has general application potential for elucidating the ecological roles of uncultured microorganisms in their natural habitats.


Assuntos
Poluentes do Solo , Solo , Biodegradação Ambiental , Compostos de Bifenilo , Isótopos , Análise de Célula Única , Microbiologia do Solo
14.
J Hazard Mater ; 391: 122200, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32044634

RESUMO

Straw biochar and straw application to paddy soil dramatically altered arsenic (As) biogeochemical cycling in soil-rice system, but it remains unknown how As biotransformation microbes (ABMs) contribute to these processes. In this study, rice pot experiments combining terminal restriction fragment length polymorphism (T-RFLP) analysis and clone library were performed to characterize ABMs. Through linear discriminant analysis (LDA) effect size (LEfSe) and correlation analysis, results revealed that arrA-harbouring iron-reducing bacteria (e.g., Geobacter and Shewanella) and arsC-harbouring Gammaproteobacteria (e.g., fermentative hydrogen-producing and lignin-degrading microorganisms) potentially mediated arsenate [As(V)] reduction under biochar and straw amendments, respectively. Methanogens and sulfate-reducing bacteria (SRB) carrying arsM gene might regulate methylated As concentration in soil-rice system. Network analysis demonstrated that the association among ABMs in rhizosphere was significantly stronger than that in bulk soil. Arsenite [As(III)] methylators carrying arsM gene exhibited much stronger co-occurrence pattern with arsC-harbouring As(V) reducers than with arrA-harbouring As(V) reducers. This study would broaden our insights for the dramatic variation of As biogeochemical cycling in soil-rice system after straw biochar and straw amendments through the activities of ABMs, which could contribute to the safe rice production and high rice yield in As-contaminated fields.


Assuntos
Arsênio/metabolismo , Carvão Vegetal , Oryza , Microbiologia do Solo , Poluentes do Solo/metabolismo , Bactérias/genética , Bactérias/metabolismo , Biotransformação/genética , Genes Bacterianos , Solo
15.
Environ Pollut ; 251: 651-658, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31108298

RESUMO

Dietary arsenic (As) intake from food is of great concern, and developing a reliable model capable of predicting As concentrations in plant edible parts is desirable. In this study, pot experiments were performed with 16 Chinese upland soils spiked with arsenate [As(V)] to develop a predictive model for As concentrations in pepper fruits (Capsicum annum L.). Our results showed that after three months' aging, concentrations of bioavailable As (extracted by 0.05 M NH4H2PO4) in various soils varied widely, depending on soil total As concentrations and soil properties such as soil pH and amorphous iron (Fe) contents. Furthermore, both the bioconcentration factor (BCF, denoted as the ratio of fruit As to soil As) and total As concentrations in pepper fruits were largely determined by concentrations of bioavailable As, which explained 27% and 69% variations in the BCF and fruit As concentrations, respectively. Apart from bioavailable As, soil pH and Fe contents were another two important factors influencing As accumulation in pepper fruits. Taking the three factors into account, concentrations of fruit As can be well predicted using a stepwise multiple linear regression (SMLR) analysis (R2 = 0.80, RMSE = 0.17). Arsenic species in soils and edible parts were also analyzed. Although As(V) predominated in soils (>96%), As in pepper fruits presented as As(V) (46%) and arsenite [As(III)] (39%) with small amount of methylated As (<15%). Aggregated boosted tree (ABT) analysis revealed that inorganic As concentrations in pepper fruits were determined by concentrations of bioavailable As, phosphorus (P) and Fe in soils. In contrast to inorganic As, methylated As concentrations were not correlated with those factors in soils. Taken together, this study established an empirical model for predicting As concentrations in pepper fruits. The predictive model can be used for establishing the As threshold in fruit vegetable farming soils.


Assuntos
Arsenicais/farmacocinética , Capsicum/metabolismo , Poluentes do Solo/farmacocinética , Arsenicais/análise , Arsenicais/química , Arsenicais/metabolismo , Disponibilidade Biológica , Contaminação de Alimentos/análise , Frutas/metabolismo , Concentração de Íons de Hidrogênio , Ferro/análise , Fósforo/análise , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/química , Poluentes do Solo/metabolismo
16.
J Hazard Mater ; 373: 591-599, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952004

RESUMO

Humic acid (HA) and fulvic acid (FA) are dominating humic substances (HS) in soil. In this study, the effects of HA and FA addition (0.2%-1.5%) on arsenic (As) mobility and microbial community composition in paddy soil were investigated. FA significantly increased the concentrations of As (12-fold), iron (Fe; 20-fold), manganese (Mn; 3-fold) and acetic acid (3-fold) in soil porewater, and also caused significant enrichment of Desulfitobacterium (41-fold). Furthermore, the FA addition significantly increased the relative abundance of Bathyarchaeota (4-fold), a microorganism that is suggested to be important for FA degradation. In contrast, HA slightly increased As (1.2-fold) in porewater, had little effect on Fe, Mn and acetic acid, and 1.5% HA addition significantly decreased As in porewater at day 14 (45%). Both HA and FA addition promoted As methylation. HA increased dimethylarsenate concentration and FA increased monomethylarsenate concentration in porewater. These results highlight the contrasting effects of different (HA vs. FA) organic substances on As fate in paddy soil and advance our understanding of the associations among As, Fe and organic substances through microorganisms in paddy soil.


Assuntos
Arsênio/metabolismo , Substâncias Húmicas/análise , Ferro/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Microbiota
17.
FEMS Microbiol Ecol ; 95(5)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30916760

RESUMO

Land plants directly contact soil through their roots. An enormous diversity of microbes dwelling in root-associated zones, including endosphere (inside root), rhizoplane (root surface) and rhizosphere (soil surrounding the root surface), play essential roles in ecosystem functioning and plant health. Rice is a staple food that feeds over 50% of the global population. Its root is a unique niche, which is often characterized by an oxic region (e.g. the rhizosphere) surrounded by anoxic bulk soil. This oxic-anoxic interface has been recognized as a pronounced hotspot that supports dynamic biogeochemical cycles mediated by various functional microbial groups. Considering the significance of rice production upon global food security and the methane budget, novel insights into how the overall microbial community (i.e. the microbiome) of the rice root system influences ecosystem functioning is the key to improving crop health and sustainable productivity of paddy ecosystems, and alleviating methane emissions. This mini-review summarizes the current understanding of microbial diversity of rice root-associated compartments to some extent, especially the rhizosphere, and makes a comparison of rhizosphere microbial community structures between rice and other crops/plants. Moreover, this paper describes the interactions between root-related microbiomes and rice plants, and further discusses the key factors shaping the rice root-related microbiomes.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Oryza/microbiologia , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Metano/metabolismo , Raízes de Plantas/microbiologia , Rizosfera , Solo/química
18.
FEMS Microbiol Ecol ; 95(4)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30889240

RESUMO

Rice plants are the habitat for large and diverse populations of microbes, which play important roles on rice health and productivity. However, the response of microbiome on rice culm to water flooding is poorly understood. In this study, the bacterial community on non-flooded (RSA) and flooded (RSB) rice culms was investigated through 16S rRNA gene sequencing. The results showed that RSA and RSB had significantly distinct bacterial communities. In RSA, Gammaproteobacteria and Pantoea were the most abundant class (57%), genus (37.06%), respectively, while in RSB, the most abundant phylum and genus was Firmicutes (54%) and Bacillus (52.63%), respectively. Compared with RSA, the abundance of 27 genera significantly increased and 21 genera significantly decreased in RSB, and some remarkably changed species, such as Aeromonas, Bacillus were identified, which are sensitive to non-flooded or flooded conditions. In addition, rare operational taxonomic units (OTUs) was much more than abundant OTUs in all samples, and RSB had significantly higher bacterial richness than RSA due to having more rare taxa. Our study would advance the insights into the microbiome of rice culms and its response to flooding, which would help to identify potential beneficial bacteria for improving crop health and sustainable productivity in agroecosystems.


Assuntos
Agricultura/métodos , Microbiota , Oryza/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Inundações , Microbiota/genética , RNA Ribossômico 16S/genética , Água/metabolismo
19.
Huan Jing Ke Xue ; 39(5): 2464-2471, 2018 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965548

RESUMO

Soil microorganisms are critical for arsenic transport and transformation in the soil-plant system. Endophytes are a very rich microbial resource, but to date no study has reported the responses of endophytes to arsenic pollution. In this study, the cultivable endophytic bacteria were isolated from the root, stem, leaf, and panicle of rice (Oryza sativa L. cv. Yongyou-538) at the seedling stage, tillering stage, flowering stage, and productive stage. All isolates were first screened by 1 mmol ·L-1 arsenite[As (Ⅲ)] and 10 mmol ·L-1 arsenate[As (Ⅴ)], and further screened by 2 mmol ·L-1 As (Ⅲ) and 20 mmol ·L-1 As (Ⅴ). From this study, a total of 126 strains of rice endophytes were obtained, belonging to 13 genera. Among them, 37 strains (8 genus) were isolated from the rice seedling stage, 25 strains (5 genus) were isolated from the rice tillering stage, 24 strains (8 genus) from the rice flowering stage, and 30 strains (8 genus) from the rice productive stage. The dominant genera were Bacillus sp., Psoudomonas sp., and Acinetobacter sp. After twice screening, 20 strains were found to be resistant to 1 mmol ·L-1 As (Ⅲ) and 10 mmol ·L-1 As (Ⅴ), including 16 strains that were resistant to 2 mmol ·L-1 As (Ⅲ) and 13 strains were resistant to 20 mmol ·L-1 As (Ⅴ). Importantly, the strain CS1 was found to be the most resistant bacteria to both As (Ⅲ) and As (Ⅴ) among all the isolated strains.


Assuntos
Arsênio/farmacologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana , Oryza/microbiologia , Bactérias/isolamento & purificação , Endófitos/classificação , Endófitos/efeitos dos fármacos , Endófitos/isolamento & purificação , Oryza/crescimento & desenvolvimento
20.
FEMS Microbiol Ecol ; 94(3)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29462300

RESUMO

Identifying functional microorganisms involved in the degradation of high-molecular-mass polycyclic aromatic hydrocarbons (HMM-PAHs) in agricultural soil environments could assist in developing bioremediation strategies for soil PAH contamination. Active populations of HMM-PAH degraders in agricultural soils are currently poorly understood. In this study, we identified aerobic pyrene-degrading bacteria in agricultural and industrial soils by [13C]pyrene incubations followed by DNA stable-isotope probing and high-throughput sequencing. More than 80% of pyrene was degraded during an incubation time of 35 days in both soils, with slower mineralization rates observed in agricultural soil compared with industrial soil. Members of the Pseudonocardia genus, not previously implicated in pyrene degradation, were the dominant pyrene-degrading population in agricultural soil; their relative abundance increased by three orders of magnitude. In industrial soil, Arthrobacter sp. appeared as the major pyrene degraders, while Pseudonocardia was not detectable. Mycobacterium, a group of well-known pyrene degraders, was found to be active in pyrene degradation in both soils. These results highlight the role of uncultivated members of Pseudonocardia in natural PAH biodegradation processes and expand our understanding of the metabolic potential of uncultivated microorganisms for bioremediation applications in agricultural soils.


Assuntos
Actinobacteria/metabolismo , Pirenos/metabolismo , Poluentes do Solo/metabolismo , Actinobacteria/genética , Actinobacteria/crescimento & desenvolvimento , Actinobacteria/isolamento & purificação , Biodegradação Ambiental , Isótopos de Carbono/análise , Sondas de DNA/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Mycobacterium/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Pirenos/química , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...